

EU funded Project Innovation and Networks Executive Agency (INEA) Grant Agreement Number: 727734

Modelling Solubility and Diffusivity in Facilitated Transport Membranes: Microscale and Macroscale Approaches

Paris, 03/07/2019

Kvam, Odin UEDIN Rea, Riccardo UNIBO

NanoMaterials Enhanced Membranes for Carbon Capture

Molecular Models

- Transport properties
- Explicit ionic species
- Polymer chain conformation

SAFT Equation of State

- Water absorption
- "Reaction" equilibrium
- Speciation

Empirical Models

- Diffusivity correlation
- Hydration/Permeabilit y relationship
- Macroscopic behavior

Kim, T. J., Li, B., & Hägg, M. B., J. Pol. Sci. B: Pol. Phys., 42 (23), 4326-4336, 2004

Facilitated Transport for Gas Separation

POLYBASE PROPERTIES —→ **Suitable for CO₂ separation**

NH₂

ŃΗ₂

NH₂

NH₂

NH₂

NH₂

NanoMaterials Enhanced Membranes for Carbon Capture – Grant Agreement n.727734

NH₂

NH₂

NH₂

NH₂

NH₂

NH₂

L. Deng and M. B. Hägg, J. Mem. Sci. 363, 295-301 (2010)

Volume Effects – Hydrated PVAm

Water clusters as effective free volume

- Pore limiting diameter
- Pore size distribution
- Percolation degree

What is the effect of (poly) electrolytes?

NanoMaterials Enhanced Membranes for Carbon Capture – Grant Agreement n.727734

D 0.9 <u>gH2O</u>

0.1

<u>gH2O</u> gPVAm

0.5

<u>gH2O</u>

gPVAm

Black: Neutral PVAm Red: 20% Protonated PVAm Blue: 50% Protonated PVAm

Simulated displacement as function of time

Diffusive dynamics dominated by H₂O

- Pore limiting diameter
- Pore size distribution
- Percolation degree

Black: Neutral PVAm Red: 20% Protonated PVAm Blue: 50% Protonated PVAm

Upper shaded area: maximum pore volume Lower shaded area: limiting pore diameter

Slow-moving ionic species obstruct water channel formation

For highly hydrated systems, diffusion follows Arrhenius power law behavior. Tortuosity-controlled environment as function of protonation. Black: Neutral PVAm Red: 20% Protonated PVAm Blue: 50% Protonated PVAm Green: Bulk water

Φ

Numerous polymer + solvent theories, e.g. **Mackie-Meares equation**

- : diffusion coefficient D $\mathbf{D}_{\mathbf{0}}$
 - : bulk solvent diffusion coefficient
 - : effective free volume

$$\frac{\mathrm{D}}{\mathrm{D}_0} = \left(\frac{1-\Phi}{1+\Phi}\right)^2$$

J.S. Mackie, P. Meares, Proc. R. Soc. London A232, 1955

Blue: 50% Protonated PVAm

Effective Free Volume

Protonation-dependent Percolation threshold

- Charge groups acting as gatekeepers
- H₂O and gas transport modulated by H₂O channels

Effective Free Volume

 lons strongly couple to amine groups

Free-volume effects dominate for high-T

- Decoupling of solventpolymer interactions
- H₂O and gas diffusion modulated by H₂O

Reacting Water Swollen Polymer System

Adsorbed Water Molecules Enhance the Reaction

Reacting Water Swollen Polymer System

Adsorbed Water Molecules Swell the Polymer Matrix

PVAm

NH₂

NanoMaterials Enhanced Membranes for Carbon Capture – Grant Agreement n.727734

Adsorbed Water Molecules Open New 'Windows'

Two Regimes Identified:

- Water Sorption *Around Amino Groups*
- Water Sorption in a Water Medium Environment

Two Regimes Identified:

- Water Sorption Around Amino Group
- Water Sorption in a *Water Medium Environment*

S. Prager, *J. Chem. Phys.,* **1960** Choi P. et al., *J. Electrochem Soc.,* **2005**

Two Regimes Identified:

- Water Sorption *Around Amino Group*
- Water Sorption in a *Water Medium Environment*

S. Prager, *J. Chem. Phys.,* **1960** Choi P. et al., *J. Electrochem Soc.,* **2005**

PC-SAFT EoS

Perturbed Chain Statistical Associating Fluid Theory Equation of State

Huang, Radosz, *Ind. Eng. Chem. Res.*, **1990** Gross, Sadowski, *Ind. Eng. Chem. Res.*, **2001** Naeem, Sadowski, *Fluid Phase Equilib*, **2010**

PVAm / Water

CO₂ / Water

PVAm / CO₂ / Water

PVAm **2B**: 2sites for H Bond (+/-)

Summary

Understanding Diffusivity

- The increase in water content open new windows in the internal structure
- At higher water content the species flow towards the water channels
- This causes the higher mobility / diffusivity values

Understanding Solubility

- The PC-SAFT it is able to describe the water uptake in PVAm
- The chemical reaction used can explain the water role in the ion formation
- The pePC-SAFT can predict the total CO₂ uptake as function of process parameters: Temperature Relative Humidity Partial Pressure

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 727734

Present results reflect only the author's view – INEA is not responsible for any use that may be made of the information it contains.